If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-20x-450=0
a = 2; b = -20; c = -450;
Δ = b2-4ac
Δ = -202-4·2·(-450)
Δ = 4000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4000}=\sqrt{400*10}=\sqrt{400}*\sqrt{10}=20\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20\sqrt{10}}{2*2}=\frac{20-20\sqrt{10}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20\sqrt{10}}{2*2}=\frac{20+20\sqrt{10}}{4} $
| 13x−12=6 | | -a-3+7=3a | | 7/6=2/x | | 33p/5-1/5(4=3p)=-14/5 | | 4+7-9p=1-10p | | 120+66+2m=180 | | b+ 29= 8 | | -5j+3=j+9-7j | | d+83=92= | | 8x-17=3x+8 | | 7x-19x=6 | | 3(2m-4)=60 | | 18y=7y-4-9y | | 5(u+4)=2u+14 | | 14x-7+10x-5=180 | | 2q+6=3q+3 | | 8x+10=8x+4 | | -8-8r=10r+10 | | -2x+10=8x+4 | | 4t-13=57 | | 4(2x+6)=5(x)+2 | | 3c-4=6c-19 | | x-22=66= | | w+15=8w-6 | | y=2(1/3)-2 | | 9-9w=-7w-3 | | (x/4)-(1/4)=(-3/4) | | -x/9+4=-2 | | G=3/2(p-74) | | 0=|7t-70| | | h+9+2=21;10,11,12 | | x/9-0+7=10-8+3 |